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Abstract—Colorectal endoscopy is an effective method for
detecting and treating colorectal polyps before they evolve into
colorectal cancer. However, accurately segmenting polyps in
endoscopic images is challenging due to their diverse appearance
in terms of size, color, texture, and indistinct borders with their
surroundings. Existing methods usually first employ a single
complex encoder to handle all polyps, ignoring the differences
in size and shape; each decoding step only uses output from
adjacent layers, ignoring important global information; and they
only provide supervision to the final output, which results in
inefficient segmentation of challenging samples with obscure
visual characteristics. These issues lead to poor performance as
data-set diversity increases. In order to address these limitations,
we propose a multi-scale attention detector that can handle
various polyp types and sizes. The detector employs a semantic
express module to capture crucial global information and a
multi-level and multi-view supervision mechanism to segment
polyps. Experiments are conducted on diverse datasets including
complex SUN-SEG and smaller Kvasir and CVC, and the results
demonstrate that our proposed model achieves state-of-the-art
performance.

Index Terms—Colorectal cancer, polyp segmentation, multi-
scale guidance, multi-level supervision, attention mechanism

I. INTRODUCTION

Colorectal cancer (CRC), frequently caused by polyps [2],
ranks third in the number of new cancer cases over the world
[1], posing a serious threat to human health. Early diagnosis
is essential for the treatment of CRC [3] since the survival
rate of patients with early-stage CRC can reach more than
95%, but less than 35% [47] as the patients rapidly deteriorate
to the end stage due to ignorance. Colonoscopy is such an
effective technique for CRC detection and prevention since it
provides definitive information about the location, appearance,
and status of polyps, enabling physicians to remove these
polyps before they develop into CRC. Studies have shown
that early detection and removal of polyps can reduce the
probability of CRC by 30% [4].

Developing automated tools for the important but highly
repetitive task of polyp identification and segmentation has
long been a popular area of research. However, it is a chal-
lenging task due to the diversity of the polyp itself and its faint
border with the surroundings [5]. Early polyp segmentation
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methods relied on a large number of manually designed and
extracted features, usually training classifiers [48] between
polyp and surroundings based on combinations of color and
texture or trying to analyze the fluctuations of the intestinal
wall for polyp detection. But all those methods suffer from low
accuracy and speed until the advent of deep learning methods
and the increasing number of publicly available data sets.

Although deep learning methods have made great progress
in polyp segmentation, they still have many shortcomings
making them cannot satisfy accuracy and speed at the same
time. PRA [19] designed a complex decoder to roughly locate
the polyps first, then accurately outline the contours according
to the local features, but it will inevitably cause omissions to
detect all polyps with a single encoder. U-Net++ [12] and SFA
[20] consider multi-level and multi-scale encoders, but only
use the last layer of decoder to calculate the loss function,
ignoring the importance of strengthening the supervision of
the decoding process to distinguish whether uncertain regions
belong to foreground or background. Based on video analysis,
methods such as PNS [15] and PNS+ [16] that introduce
temporal relationships increase the complexity of the model
in order to achieve higher accuracy, resulting in their slow
inference speed and cannot be used in actual diagnosis. In
addition, the above methods only use the features of adjacent
layers in the decoding process, ignoring the supplementary
effect of global information on localizing features.

In order to overcome the shortcomings of existing methods,
we propose a novel and lightweight multi-scale guidance and
multi-level supervision model for polyp segmentation. Our
insight comes from the following facts: Firstly, the diversity
of polyp morphology determines that the encoders of the
model should also be designed with different scales. Secondly,
the up-sampling operations are essentially imagination of the
lost details and the single supervision imposed on the last
decoder layer is insufficient to deal with this problem especial
on inconspicuous polyps. It is therefore important to add
supervision in time to remind the model which parts belong to
the foreground. Furthermore, global features are important in
locating objects, providing abstract semantic information about
objects, and should not be wasted. We employ a multi-scale
convolutional attention encoder to cope with polyps of varying
sizes and shapes. A semantic express module is used to pass



the diluted global semantic information directly to the decoder.
Besides, we propose a multi-level and class activate map based
multi-view learning strategy to strengthen the supervision of
decoding and encoding process. In brief, the contributions of
this paper are threefold:

• (1) We propose a novel polyp segmentation model that
can deal with morphological differences in polyps such
as size and shape, and can better distinguish hard polyps
with inconspicuous visual features.

• (2) To achieve these goals, we employ an multi-scale
convolutional attention module and a semantic express
module to enhance the U-Net. The proposed multi-level
and multi-view learning strategy make features more
distinguishable.

• (3) Experimental results demonstrate that the proposed
approach can outperform existing state-of-the-art methods
on SUN-SEG [16], kvasir [36] and CVC [34] especially
on hard samples. Moreover, it achieves 30 FPS real-time
prediction with a 320x320 input size using one NVIDIA
1080Ti GPU.

II. RELATED WORKS

A. Deep Learning based Medical Image Segmentation

The early deep learning medical image segmentation
method is usually based on FCN [49], which first performs
down-sampling to extract features and up-sample the last few
layers of feature maps to the original size as the prediction
result. While various attempts have been made in this field, it
was not until the introduction of U-Net [6] that significant
improvements were observed. Two corresponding branches
are consisted in this architecture: the contracting path, which
performs down-sampling and provides global information, and
the expansion path, which performs up-sampling and enable
seize localized information. One key feature that make U-Net
particularly superior is skip connections which concatenate
features from the contracting path [7]. This approach serves
two purposes: firstly, it eliminates redundant noise caused by
up-sampling operations in the decoder, secondly, it mitigates
the adverse effects of information loss resulting from repeated
pooling during the encoding process. Variants such as Re-
sUNet [8] and ResUNet++ [9] have been proposed based on
the renowned ResNet [10]. These variants aim to overcome the
challenges associated with training very deep neural networks,
as increasing the depth of layers can rather lead to recession
and even degradation in performance. In these models, a
residual connection is applied before the down-sampling or
up-sampling manipulation during the homologous branches
[11]. The input to the former convolution layer is added to
the result of the later convolution layer at each block. The
utilization of residual operation assists to solve issues like
gradient explosion or disappearance and mitigates the degra-
dation problem, thereby enabling the design of deeper neural
networks. U-Net++ [12] is an advanced extension inspired by
recently DenseNet [13]. U-Net++ [12] introduces redundant
skip connection units between every two corresponding blocks.

Each skip connection unit accepts all feature maps from
previous units at the identical level, as well as up-sampled
feature maps from the direct lower unit [14]. It assumes that
both low-level and high-level encoders play crucial roles, and
determines the optimal number of skip connections through
an adaptive learning process.

But these methods adopt a single-scale filter, ignoring the
diversity of polyps, while our encoder adopts convolutions of
different sizes to extract features in parallel to fully detect
polyps of various shapes and sizes. Furthermore, they only
apply supervision at the last decoder layer, which poor in
segment harder samples that hold an indistinct border with the
surrounding mucosa. We apply supervision at each encoder to
enhance the distinguish of uncertain regions.

B. Colonoscopy Polyp Segmentation

Methods before the deep learning era relied on extracting a
combination of hand-crafted features, such as color and texture
to distinguish a polyp from its surroundings [50]. However,
these methods perform poorly due to the low quality of hand-
extracted features. After the introduction of CNN, the afore-
mentioned U-Net [6] and its variants such as U-Net++ have be-
come the basic models for polyp segmentation. PNS [15] and
PNS+ [16] introduced a self-attention module to strengthen
the original architecture. They incorporated multiple adjacent
frames of images into the model to explore the temporal and
spatial relationships of the images. However, this approach
led to a waste of hardware resources, and the cross-attention
mechanism was just applied to global features, neglecting the
local details [17]. To enhance specific semantic information
of features, researchers designed task-driven networks that
leverage the inherent characteristics of polyp data sets. For
instance, ACS [18] employed an attention-gating mechanism
to balance the impact of global classification information and
local semantic information on samples with varying complex-
ities. When the samples are complex, the model dynamically
increased the weight of local information to achieve improved
segmentation results. PRA [19] adopted a method that emu-
lates a doctor’s diagnostic process. It firstly predicted the rough
area then used a reverse attention mechanism to obtain refined
boundary clues for polyp segmentation. SFA [20] decomposed
the polyp segmentation task into two steps: first locating
the approximate position of the polyp, and then accurately
determining the boundary. Additionally, they introduced a new
loss function that focuses more on boundary to identically
enhance both inner region and boundary detection. However,
it is important to note that these approaches rely heavily on
their own assumptions rather than established facts.

Existing models either apply the attention mechanism to
explore the semantic connection between adjacent frames ,
adding excessive parameters to the model, or use it only when
the encoder interacts with the decoder like ACS. However,
we use the attention mechanism throughout the encoding
process. In addition, unlike these methods that only use local
information for decoding, we emphasize the role of global
features in the decoding process.



Fig. 1. The overall architecture of our method which consists of a multi-scale convolutional attention based encoder and a decoder with semantic express
module which directly preserve and embed global information through the global information embedding module. This module is designed to effectively
segment smaller and less visible polyps. All of details will be discussed in section 3.

III. METHODS

A. The Overall Framework

The architecture of our enhanced U-Net model is shown in
Fig.1. We adopt a multi-scale attention-based encoder which
has four sequential blocks that work like an FPN [21] to cope
with polyps of varying size and shape. The decoder branch
also has four blocks and each of them receives three feature
maps from the semantic express module(SEM), correspond-
ing encoder, and lower-level decoder. The later two equal-
sized feature maps will be channel-wise concatenated while
the feature from SEM will be processed by an embedding
module. The SEM captures and preserves the global context
information and densely concatenates each layer in the decoder
path. The embedding module bridge the semantic gap caused
by rough global features. Besides, our model outputs all the
decoding results and compare them with resized gt to construct
multi-level losses to better distinguish fuzzy areas. Finaly, we
use a class activate map based multi-view loss to make the
features more focused on areas where polyps are likely present.

B. Multi-scale Convolutional Attention Module

The encoder follows a pyramid structure similar to FPN [21]
to down-sample and extracts image features while preserving
the spatial structure of the image. Inspired by VIT [22],

[23], we design a multi-scale convolutional attention(MSA)
module as the backbone of the encoder, which combines the
advantages of the two basic architectures in the visual field:
the convolutional structure focuses on the local features of
the image and can preserve the spatial features of the image,
while the attention mechanism can make up for the neglect
of the global features of the convolutional architecture [24].
The Depth-wise convolution proposed by mobile-net [25] is
an efficient and lightweight new form of CNN. It only uses
one convolution kernel for down-sampling processing for each
channel of the input feature map, and then uses 1x1 point-
wise convolution to adjust the output channel to maximize
the receptive field without introducing too many parameters.
As shown in Fig.2, each multi-scale and attention block
consists of three components: the first is a 5x5 depth-wise
convolution to achieve down-sampling, followed by a batch
normalization layer [26] since batch normalization gains more
for the segmentation performance than layer normalization.
To deal with polyps of different sizes, the results of down-
sampling will be processed in parallel by three depth-wise
convolutions with sizes to extract features at different scales.
After the channel is adjusted by 1x1 point-wise convolution,
all the feature maps mentioned above and the unprocessed
original map will be concatenated through the channel, and



Fig. 2. Input features down-sampled in MSA will pass through a multi-scale
detector. The detection result is used as the attention weight of the feature
map after downsampling

then adjusted by 1x1 convolution as the attention weight, and
these weights are compared with the previous down-sampling
results element by element. The product becomes the final
output of the encoder. Mathematically, the encoder proceeds
as follows:

F1 = φd (F0) , (1)

Foe =

(
F1 +

3∑
i=1

hi (F1)

)
⊗ F1. (2)

Among them, F1 represents the result of down-sampling,
φd (·) indicates processing F1 with a 5x5 depth wise con-
volution and performing down-sampling. hi (·) are i-th multi-
scale depth wise convolution without down-sampleing.

∑3
i=1

means summing the results of three multi-scale detectors. ⊗
represents the attention mechanism, Foe is the output of the
encoder of this layer.

C. Semantic Express Module

As shown in Fig.3, a decoder block consists of a series of
convolutional blocks stacked together and progressively up-
sampled back to the original size using bilinear interpolation.
It has been pointed out in [27]that global and aggressive se-
mantic information is instrumental for discovering the specific
locations of objects. Meanwhile, lower or mid-level features
are essential to bringing the deep extracted features from a
coarse and condensed state to a fine level [28]. But one of
the important problems with the U-shaped architecture to be
resolved is that higher-level features are gradually diluted as
they are transferred to the lower layers, and the model tends to
focus on local features at the expense of capturing the content

Fig. 3. Each decoder block accepts upsampled lower decoder outputs, skip
connection from peer encoders, and the global information passed from the
semantic express module.

of the image as a whole. Regarding the lack of high-level
semantic information for fine-level feature maps in the bottom-
up decoder, we adopt a semantic express module, it consists
of a sub-module that holds high-level semantic information
and a series of information flows (IFs). This module copies
the output of the last encoder and the IFs are independent of
the decoder, using bilinear interpolation up-sampling to pass
the high-level semantic information directly to each decoder
and participate in the decoding operation together. In order to
make the high-magnification up-sampling process smoother,
we use a global information embedding sub-module in Figure
3, which first performs up-sampling on the corresponding
scale of the global features, and then performs the following
processing on the aforementioned results in parallel in multiple
sub-spaces. It first samples and then up-samples the features at
the same ratio to fully cope with the different sizes of objects
in the global features, making their features fully fused. In this
way, we explicitly increase the weight of the global semantic
information in each part of the bottom-up path to ensure that
the positional information is not diluted when building the
U-shape network.

F4 = F3 +

3∑
i=1

gi
 3∑

j=1

ϕj (F3)

 , (3)

Fod = ψ3×3 (fc (Fdl,Foe) + F4) . (4)

Among them F3 represents the output of SEM, F4 is the
result of FAM, ϕj (·) and gi (·) represents down-sampling or
up-sampling using depth-wise convolutions,

∑3
j=1 and

∑3
i=1

represent the summation of down-sampling or up-sampling
results respectively. fc (·) refers to the function connecting
two feature maps in the channel direction, ψ3×3 is a is a
convolutional layer with a kernel size of {3× 3}to eliminate
the semantic gap, Fod is the result of this decoder.



Fig. 4. The CAM loss is used to make the encoder more focused on the
foreground of the image since the CAM obtained by weighting and summing
the results of the encoder has certain targeting capabilities.

D. Multi-level and Multi-view Training Strategy

Segmentation networks tend to apply supervision only at
the last layer of decoders, measuring the difference between
decoding results and gt to guide the training procession. As
a result, traditional U-Net has two shortcomings: firstly, U-
like networks have complex up-sampling operations, which
in a way ”imagine” the details of the image without specific
supervision, and the final segmentation supervision alone is not
sufficient to cope with obscure targets. Secondly, the process
of connecting the feature map from the encoder block to the
corresponding decoder, and then processing it through certain
convolutional layers to eliminate the blending effect, also lacks
a clear objective. In this method, multi-level supervision is
designed to solve the above problem by up-sampling the output
of each decoder using bilinear interpolation and comparing it
with gt or by directly resizing gt to the appropriate scale and
comparing it with them as part of the final loss. In terms of
the specific calculation, we follow the adaptive pixel intensity
loss (API) proposed by TRACER [29], which introduces the
concept of pixel intensity, assigning a weight to each pixel
point to re-balance the various components of the ground truth,
based on the idea that, compared to pixels that highlight the
background of the image and the center of the target edges
and the pixels adjacent to the edges need more attention. It,
therefore, gives more weight to the edges, forcing the model
to better segment the edge region and obtain a finer mask.

Some studies [30] pointed out that the global average
pooling layer(GAP) proposed in [31] enables the convolutional
neural network to have remarkable localization ability despite
being trained on image-level labels. Further experiments have
shown that both GoogLeNet and VGG have some object
localization capability after using GAP to process the output
of the last convolutional layer, in other words, this method is a
weakly supervised target detection solution because it allows
the model to focus more on target-related areas of the image.
As shown in Fig.4, for each specific class, GAP generates a
set of weights corresponding to the last convolutional layer
of the network, which is multiplied by the corresponding
feature map and combined in the channel direction to form
a class activates map [32](CAM) corresponding to the class.
The visualization results suggest that the CAM assigns greater
weights to pixels that may represent semantic information

about the image. Inspired by these detection insights, We add
a binary classification task to the last layer of the encoder,
adding the classification losses to the final loss function
and using the classification weights formed by the GAP to
construct a class activation map (CAM) for the class of polyps.
The CAM is compared with gt to calculate an additional
segmentation loss, which is added to the final loss function,
noting that the classification loss is valid for all samples during
training, while the segmentation loss is only valid for positive
samples. This process can be formalized as follows:

Fk =
1

x+ y

∑
x,y∈Ω

fk (x, y) , (5)

sc =

K∑
k=1

wc
kF

k 1

x+ y

∑
x,y∈Ω

K∑
k=1

wc
kfk (x, y) , (6)

pc =
esc

es1 + es2 + · · ·esK
, (7)

Fre = wc
kfk (x, y) . (8)

Here x,y is the spatial location of a pixel point. K indicates all
categories. Ω denotes the entire feature map points. F k denotes
the global average pooling result for the K-th channel,fk (x, y)
is the activation of the corresponding spatial position. wc

k

denotes the importance of F k for the model to judge the target
as class c. The probability of the target being class C will be
given by the pc. esi denotes the probabilistic activation value
of class c.

∑
x,y∈Ω and

∑K
k=1 means summation in spatial and

channel direction. Fre indicates the final result of the encoder.
The final loss function consists of three components, a multi-
level segmentation loss with pixel intensity, a CAM loss for
positive samples and a classification loss for all samples.

Lseg =

4∑
i=1

(Lapi (ϕup (Fdi
, si))) , (9)

Lcam = −
∑

m,n∈Ω

(Ym,n log Pm,n + (1− Ym,n) log (1− Pm,n)) ,

(10)

Lcls = − (yi log pi + (1− yi log (1− pi))) . (11)

Here,Fdi
is i-th decoding result,

∑
i means making use of

all decoders. ϕup (·) means to up-sample Fdi
by a factor of

si using bilinear interpolation Lapi is the adaptive pixel loss,
Ym,n denotes the pixel level label of location (m,n). Pm,n

denotes the probability the pixel is positive sample.
∑

m,n

means adding all pixel loss in the image. yi indicates whether
the sample contains polyps, pi denotes the probability that
the model predicts the image as a positive sample. These
segment loss Lseg , Lcam and the categorical loss Lcls are
added together to form the complete loss function.



IV. EXPERIMENT DESIGN

A. Experimental Settings

We evaluated our method on two types of publicly avail-
able polyp segmentation data sets, the first being the earlier
and smaller ETIS [33], CVC-ClinicDB/CVC-612 [34], CVC-
ColonDB [35], Kvasir [36], and the second being the more
recently proposed larger SUN-SEG [16] data set, which con-
tains 19544 training images and tens of thousands of test
images distributed across multiple settings. We compare the
model in this paper with several state-of-the-art medical image
segmentation methods: U-Net [6],U-Net++ [12] ,ResUNet++
[9],SFA [20],PRA [19],ACS [18]. Two video segmentation
methods are also compared: PNS [15] PNS+ [16], where
the results for PRA, ACS, PNS+ are obtained from publicly
available code, using default settings, and the rest are quoted
from experimental results of paper PRA and PNS+.

Our implementation is based on PyTorch and all train-
ing and testing can be done on a single 1080TI, with the
input image set to 320x320 and processed by certain data
enhancements and augmentations. Before starting training on
the target data set the encoder was pre-trained on imagenet to
migrate the knowledge of the natural images and obtain good
initial weights. we set the initial learning rate to 5 × 10−5

and employed a weight decay of 1 × 10−4. We choose the
AdamW optimizer to optimize the loss function and train the
model. Batch size and gradient clipping are set to 16 and 2
respectively. The training epoch is set to 50 since we find that
this ensures adequate training and saturation of the model for
all data sets. For the first type of data set, we follow the PRA
correlation settings: i.e. the images from the Kvasir and CVC-
ClinicDB data sets are randomly split into two parts, 80% of
which are used for training and 20% for testing. Our training-
related parameters were set as follows table. In terms of
evaluation metrics, we mainly use two widely used evaluation
metrics in the field of semantic segmentation, Dice and IoU
for quantitative evaluation. To gain a deeper understanding of
the model performance and to compare more comprehensively
with existing models, we inherited the evaluation system from
PRA and introduced other metrics that are widely used in the
field of target detection [37] including Fα

β , Emn
φ for evaluating

pixel-level similarity, Sen and Sα for evaluating global-level
similarity. We used the open source evaluation toolkit, which
can be found at the official website of VPS in GitHub [38].

B. Comparison to the State-of-the-art Methods

For the first type of data set, we set up separate experiments
to test the learning and generalization capabilities of the
model, following the PRA setup. The remaining 20% of the
data from Kvasir and CVC-612, which had been present in
the training set, were used to verify the model’s ability to
fit the training data. We tested the model’s generalization
ability on the other two data sets. These data sets that do
not appear in the training set have their own challenging
circumstances and properties. CVC-ColonDB is a small scale
data set containing 380 images from 15 real video sequences.

TABLE I
EXPERIMENTAL RESULTS ON KVASIR AND CVC-612 FOR TESTING THE

LEARNING ABILITY OF THE MODEL

Dataset Method Publish Dice IoU Fw
β Sα Emn

φ

U-Net[6] MICCAI2015 0.818 0.746 0.794 0.858 0.893
U-Net++[12] TMI2019 0.821 0.743 0.808 0.862 0.910

ResUNet-Mod[39] GRSL2018 0.791 N/A N/A N/A N/A
Kvasir ResUNet++[9] ISM2019 0.813 0.793 N/A N/A N/A

SFA[20] MICCAI2019 0.723 0.611 0.670 0.782 0.849
PraNet[19] MICCAI2020 0.898 0.840 0.885 0.915 0.948

ours 0.912 0.851 0.887 0.921 0.953
U-Net[6] MICCAI2015 0.823 0.755 0.811 0.889 0.954

U-Net++[12] TMI2019 0.794 0.729 0.785 0.873 0.931
ResUNet-Mod[39] GRSL2018 0.779 N/A N/A N/A N/A

CVC-612 ResUNet++[9] ISM2019 0.796 0.796 N/A N/A N/A
SFA[20] MICCAI2019 0.700 0.607 0.647 0.793 0.885
PNS[15] MICCAI2021 0.860 0.795 N/A 0.903 0.903

ours 0.892 0.836 0.876 0.928 0.948

TABLE II
RESULTS FROM CVC-COLONDB AND ETIS FOR TESTING THE

GENERALISATION ABILITY OF THE MODEL

Dataset Method Publish Dice IoU Fw
β Sα Emn

φ

U-Net[6] MICCAI2015 0.512 0.444 0.498 0.712 0.776
U-Net++[12] TMI2019 0.483 0.41 0.467 0.691 0.760

CVC-ColonDB SFA[20] MICCAI2019 0.469 0.347 0.379 0.634 0.765
PraNet[19] MICCAI2020 0.709 0.640 0.696 0.819 0.869

ours 0.747 0.662 0.712 0.834 0.863
U-Net[6] MICCAI2015 0.398 0.335 0.366 0.684 0.740

U-Net++[12] TMI2019 0.401 0.344 0.390 0.683 0.776
ETIS SFA[20] MICCAI2019 0.297 0.217 0.231 0.557 0.633

PraNet[19] MICCAI2020 0.628 0.567 0.600 0.794 0.841
ours 0.746 0.658 0.684 0.844 0.869

ETIS is an earlier released small scale data set containing 196
polyp images. All images were used as data for our test set.
The results of our experiments are shown in Table.Iand 3,
which show that our model achieves SOTA in both its ability
to fit on the seen data set and its ability to generalize on the
unseen data set. Besides, we get the better performance on
hard test set. For the second type of data set, we only used
positive samples from SUN-SEG, and negative samples will be
used in subsequent ablation experiments. Following the data
set partitioning provided by SUN-SEG, we trained with all
training sets and tested only on easy/unseen and hard/unseen,
as data sets that have not appeared in the training set are
more responsive to the generalization ability of the model. The
results are shown in Table.4, where our model outperforms
all image-based and video-based methods. In Fig.5, we give
the results of the model’s polyp segmentation on the CVC-
clinicDB validation set. Our model can precisely locate and
segment polyp tissue in many challenging scenarios, e.g.,
different sizes, shapes, textures, etc.

C. Ablation Study

In this section, we conduct thorough testing on the SUN-
SEG dataset to comprehensively evaluate each component of
our model. Our objective is to gain a deeper understanding
of our model’s capabilities and showcase the effectiveness of
our design. We begin by assessing the efficacy of the Semantic



TABLE III
EXPERIMENTAL RESULTS ON SUN-SEG, TESTED ONLY ON THE UNSEEN SUBGROUP IN ORDER TO MAKE THE RESULTS MORE CONVINCING

SUN-SEG-Easy (Unseen) SUN-SEG-Hard (Unseen)
Model Sα Emn

φ Fw
β Fmn

β Dice Sen Sα Emn
φ Fw

β Fmn
β Dice Sen

IMAGE

UNet 0.669 0.677 0.459 0.528 0.530 0.420 0.670 0.679 0.457 0.527 0.542 0.429
UNet++[6] 0.684 0.687 0.491 0.553 0.559 0.457 0.685 0.697 0.480 0.544 0.554 0.467

ACSNet[18] 0.782 0.779 0.642 0.688 0.713 0.601 0.783 0.787 0.636 0.684 0.708 0.618
PraNet[19] 0.733 0.753 0.572 0.632 0.621 0.524 0.717 0.735 0.544 0.607 0.598 0.512
SANet[40] 0.720 0.745 0.566 0.634 0.649 0.521 0.706 0.743 0.526 0.580 0.598 0.505

VIDEO

COSNet[41] 0.654 0.600 0.431 0.496 0.596 0.359 0.670 0.627 0.443 0.506 0.606 0.380
MAT[42] 0.77 0.737 0.575 0.641 0.710 0.542 0.785 0.755 0.578 0.645 0.712 0.579
PCSA[43] 0.680 0.660 0.451 0.519 0.592 0.398 0.682 0.660 0.442 0.510 0.584 0.415
2/3D[44] 0.786 0.777 0.652 0.708 0.722 0.603 0.786 0.775 0.634 0.688 0.706 0.607
AMD[45] 0.474 0.533 0.133 0.146 0.266 0.222 0.472 0.527 0.128 0.141 0.252 0.213
DCF[46] 0.523 0.514 0.270 0.312 0.325 0.340 0.514 0.522 0.263 0.303 0.317 0.364

FSNet[47] 0.725 0.695 0.551 0.630 0.702 0.493 0.724 0.694 0.541 0.611 0.699 0.491
PNSNet[15] 0.767 0.744 0.616 0.664 0.676 0.574 0.767 0.755 0.609 0.656 0.675 0.579
PNS+[16] 0.806 0.798 0.676 0.730 0.756 0.630 0.797 0.793 0.653 0.709 0.737 0.623

Ours 0.842 0.869 0.754 0.809 0.772 0.738 0.852 0.892 0.749 0.807 0.786 0.763
Ours w/ cam 0.856 0.895 0.777 0.822 0.795 0.760 0.863 0.909 0.774 0.812 0.801 0.795

Fig. 5. Visualization of our method on the CVC-612, with each row representing one sample. The meaning of each column has been indicated in the figure.

TABLE IV
THE ABLATION STUDY OF SEMANTIC EXPRESS MODULE ON SUN-SEG

EASY/UNSEEN

D4 D3 D2 Sα Emn
φ Fw

β Fmn
β Dice Sen IoU

× × × 0.808 0.820 0.704 0.757 0.715 0.669 0.634
√

× × 0.815 0.831 0.719 0.772 0.729 0.678 0.648
√ √

× 0.822 0.848 0.730 0.786 0.745 0.697 0.657
√ √ √

0.842 0.869 0.754 0.809 0.772 0.738 0.688

TABLE V
THE ABLATION STUDY OF VARIOUS SUPERVISION ON SUN-SEG

HARD/UNSEEN

supervision Sα Emn
φ Fw

β Fmn
β Dice Sen IoU

single level 0.842 0.877 0.747 0.791 0.770 0.753 0.685
multi level 0.852 0.892 0.749 0.807 0.786 0.763 0.702

multi level w/i CAM 0.863 0.909 0.774 0.812 0.801 0.795 0.724



Express Module (SEM). To accomplish this, we incrementally
introduce global information flows to decoders D2-D4 and
evaluate their performance on easy/unseen test set. These
models are trained using identical settings on the SUN-SEG
training set. The results, presented in Table.5, demonstrate
that the model’s performance consistently improves as global
information is incorporated into more decoder layers. Next,
we evaluate the performance of the model on both easy and
hard test sets after incorporating the CAM LOSS. Table.4
displays the results, illustrating that the addition of CAM
LOSS yields improvements across all test sets. Finally, we
examine the impact of various supervision methods on the
model’s performance on the hard/unseen data set which can
be seen in Table.6 We compare the outcomes of applying
supervision solely on the output of the last decoder layer
(single supervision) with multi-level supervision, which in-
volves utilizing all decoder outputs. Additionally, we consider
the most comprehensive approach, multi-level supervision
combined with CAM LOSS. Our findings indicate that both
multi-angle and multi-level supervision effectively enhance the
model’s performance. Overall, our experiments demonstrate
the effectiveness of the SEM, CAM loss, and various supervi-
sion methods in improving the performance of our model on
different test sets.

V. CONCLUSION

We propose a enhanced U-Net network architecture for
automatic polyp segmentation in colonoscopy images. The
proposed method includes an encoder with a multi-scale
convolutional attention mechanism and a decoder with a
semantic express module. Comprehensive experiments on the
widely used benchmark datasets demonstrate that the proposed
approach achieves state-of-the-art performance under several
different experimental settings, especially demonstrating re-
markable accuracy (mdice>0.9) on the kvasir-seg dataset.
Moreover, our model exhibits exceptional inference speed,
achieving over 30 frames per second (FPS) on one NVIDIA
1080Ti GPU when processing 320×320 image inputs. In com-
parison to the leading PRA and PNS+ models, our approach
shows superior learning ability, generalization capacity, and
real-time segmentation efficiency.

REFERENCES

[1] Silva,J.,Histace,A.,Romain,O.,Dray, X., Granado,B.:Toward embedded
detection of polyps in wce images for early diagnosis of colorectal can-
cer. International Journal of Computer Assisted Radiology and Surgery
9(2), 283–293

[2] High-grade dysplasia and invasive carcinoma in colorectal adeno-
mas: A multivariate analysis of the impact of adenoma and patient
characteristics[J].European Journal of Gastroenterology and Hepatol-
ogy,2002,14(2):183–188.

[3] David A Rosman, Judith Bamporiki, Rebecca Stein-Wexler, and Robert
D Harris.2019.Developing diagnostic radiology training in low resource
countries. Current Radiology Reports

[4] Haggar, F.A., Boushey, R.P.: Colorectal cancer epidemiology: incidence,
mortality,survival, and risk factors. Clinics in colon and rectal surgery
22(04), 191–197

[5] Jia, X., Xing, X., Yuan, Y., Xing, L., Meng, M.Q.H.: Wireless capsule
endoscopy:A new tool for cancer screening in the colon with deep-
learning-based polyp recognition. Proceedings of the IEEE 108(1)

[6] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. ”U-net: Convo-
lutional networks for biomedical image segmentation.” Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October 5-9, 2015, Pro-
ceedings, Part III 18. Springer International Publishing, 2015.

[7] Siddique N, Paheding S, Elkin C P, et al. U-net and its variants for
medical image segmentation: A review of theory and applications[J].
Ieee Access, 2021, 9: 82031-82057.

[8] Diakogiannis F I, Waldner F, Caccetta P, et al. ResUNet-a: A deep
learning framework for semantic segmentation of remotely sensed
data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020,
162: 94-114.

[9] Jha D, Smedsrud P H, Riegler M A, et al. Resunet++: An advanced ar-
chitecture for medical image segmentation[C]//2019 IEEE International
Symposium on Multimedia (ISM). IEEE, 2019: 225-2255.

[10] He K, Zhang X, Ren S, et al. Deep residual learning for image
recognition[C]//Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016: 770-778.

[11] Minaee S, Boykov Y, Porikli F, et al. Image segmentation using deep
learning: A survey[J]. IEEE transactions on pattern analysis and machine
intelligence, 2021, 44(7): 3523-3542.

[12] Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. Unet++: Redesigning
skip connections to exploit multiscale features in image segmentation[J].
IEEE transactions on medical imaging, 2019, 39(6): 1856-1867.

[13] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convo-
lutional networks[C]//Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017: 4700-4708.

[14] Jha D, Riegler M A, Johansen D, et al. Doubleu-net: A deep con-
volutional neural network for medical image segmentation[C]//2020
IEEE 33rd International symposium on computer-based medical systems
(CBMS). IEEE, 2020: 558-564.

[15] G.-P. Ji, Y.-C. Chou, D.-P. Fan, G. Chen, H. Fu, D. Jha, and L. Shao,
“Progressively normalized self-attention network for video polyp seg-
mentation,” in International Conference on Medical Image Computing
and Computer Assisted Intervention. Strasbourg, France: Springer, 2021,
pp. 142–152

[16] Ji G P, Xiao G, Chou Y C, et al. Video polyp segmentation: A deep
learning perspective[J]. Machine Intelligence Research, 2022: 1-19.

[17] Khan S, Naseer M, Hayat M, et al. Transformers in vision: A survey[J].
ACM computing surveys (CSUR), 2022, 54(10s): 1-41.

[18] R. Zhang, G. Li, Z. Li, S. Cui, D. Qian, and Y. Yu, “Adaptive
context selection for polyp segmentation,” in International Conference on
Medical Image Computing and Computer Assisted Intervention. Lima,
Peru: Springer, 2020, pp. 253–262

[19] D.-P. Fan, G.-P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen,and L. Shao,
“Pranet: Parallel reverse attention network for polyp segmentation,” in
International Conference on Medical Image Computing and Computer
Assisted Intervention. Lima, Peru: Springer, 2020,pp. 263–273

[20] Fang, Y., Chen, C., Yuan, Y., Tong, K.y.: Selective feature aggregation
network with area-boundary constraints for polyp segmentation. In:
MICCAI. pp. 302–310.Springer (2019)

[21] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object
detection[C]//Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017: 2117-2125.

[22] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16
words: Transformers for image recognition at scale[J]. arXiv preprint
arXiv:2010.11929, 2020.

[23] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J].
Advances in neural information processing systems, 2017, 30.

[24] Guo M H, Lu C Z, Hou Q, et al. Segnext: Rethinking convolu-
tional attention design for semantic segmentation[J]. arXiv preprint
arXiv:2209.08575, 2022.

[25] Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications[J]. arXiv preprint
arXiv:1704.04861, 2017.

[26] Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In: Int. Conf. Mach. Learn.
pp. 448–456. PMLR (2015)

[27] Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, Ali Borji,Zhuowen Tu,
and Philip Torr. Deeply supervised salient object detection with short
connections. IEEE TPAMI,41(4):815–828, 2019.

[28] He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the
IEEE international conference on computer vision. 2017: 2961-2969.



[29] Lee M S, Shin W S, Han S W. TRACER: Extreme Attention Guided
Salient Object Tracing Network (Student Abstract)[C]//Proceedings of
the AAAI Conference on Artificial Intelligence. 2022, 36(11): 12993-
12994.

[30] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba.Object
detectors emerge in deep scene cnns. International Conference on
Learning Representations, 2015.

[31] M. Lin, Q. Chen, and S. Yan. Network in network. International
Conference on Learning Representations, 2014.

[32] Zhou B, Khosla A, Lapedriza A, et al. Learning deep features for
discriminative localization[C]//Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016: 2921-2929.

[33] Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward
embedded detection of polyps in wce images for early diagnosis of
colorectal cancer. International Journal of Computer Assisted Radiology
and Surgery 9(2), 283–293 (2014)

[34] Bernal, J., S´anchez, F.J., Fern´andez-Esparrach, D., Rodrguez, C.,
Vilarino, F.: Wm-dova maps for accurate polyp highlighting in
colonoscopy: Validation vs saliency maps from physicians. CMIG 43,
99–111 (2015)

[35] Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in
colonoscopy videos using shape and context information. IEEE TMI
35(2), 630–644 (2015)

[36] Jha, D., Smedsrud, P.H., Riegler, M.A., Halvorsen, P., de Lange, T.,
Johansen, D.,Johansen, H.D.: Kvasir-seg: A segmented polyp dataset.
In: MMM. pp. 451–462. Springer (2020)

[37] Fan, D.P., Ji, G.P., Sun, G., Cheng, M.M., Shen, J., Shao, L.: Camou-
flaged object detection. In: IEEE CVPR (2020)

[38] https://github.com/GewelsJI/VPS/tree/main/eval
[39] Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net.

IEEE Geoscience and Remote Sensing Letters 15(5), 749–753 (2018)
[40] J. Wei, Y. Hu, R. Zhang, Z. Li, S. K. Zhou, and S. Cui, “Shallow

attention network for polyp segmentation,” in International Conference
on Medical Image Computing and Computer Assisted Intervention.
Strasbourg, France: Springer, 2021, pp. 699–70

[41] X. Lu, W. Wang, C. Ma, J. Shen, L. Shao, and F. Porikli, “See
more, know more: Unsupervised video object segmentation with co-
attention siamese networks,” in Conference on computer vision and
pattern recognition.

[42] T. Zhou, J. Li, S. Wang, R. Tao, and J. Shen, “Matnet: Motion-
attentive transition network for zero-shot video object segmentation,”
Transactions on image processing, vol. 29, pp. 8326–8338, 2020,

[43] Y. Gu, L. Wang, Z. Wang, Y. Liu, M.- M. Cheng, and S.-P. Lu, “Pyramid
constrained self-attention network for fast video salient object detection,”
in AAAI Conference on Artificial Intelligence, vol. 34. New York, New
York

[44] J. G.-B. Puyal, K. K. Bhatia, P. Brandao, O. F. Ahmad, D. Toth,
R. Kader,L. Lovat, P. Mountney, and D. Stoyanov,“Endoscopic polyp
segmentation using a hybrid 2d/3d cnn,” in International Conference on
Medical Image Computing and Computer Assisted Intervention.

[45] R. Liu, Z. Wu, S. Yu, and S. Lin, “The emergence of objectness:
Learning zero-shot segmentation from videos,” in Advances in neural
information processing systems. [Online]:Curran Associates, Inc., 2021.

[46] M. Zhang, J. Liu, Y. Wang, Y. Piao, S. Yao, W. Ji, J. Li, H. Lu, and
Z. Luo, “Dynamic context-sensitive filtering network for video salient
object detection,” in International conference on computer vision.IEEE,
2021, pp. 1553–1563,

[47] Bernal, J., S´anchez, J., Vilarino, F.: Towards automatic polyp detection
with a polyp appearance model. PR 45(9), 3166–3182 (2012)

[48] Mamonov, A.V., Figueiredo, I.N., Figueiredo, P.N., Tsai, Y.H.R.: Au-
tomated polyp detection in colon capsule endoscopy. IEEE TMI 33(7),
1488–1502 (2014)

[49] Long J, Shelhamer E, Darrell T. Fully convolutional networks for seman-
tic segmentation[C]//Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015: 3431-3440.

[50] Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Integrating online and
offline threedimensional deep learning for automated polyp detection in
colonoscopy videos.IEEE JBHI 21(1), 65–75


